
c12) United States Patent
Miller

(54) DRIVING A WEB BROWSER FOR TESTING
WEB PAGES USING A DOCUMENT OBJECT
MODEL

(71) Applicant: Edward F. Miller, San Francisco, CA
(US)

(72) Inventor: Edward F. Miller, San Francisco, CA
(US)

(73) Assignee: Software Research, Inc., San
Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 139 days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 14/657,955

(22) Filed:

(65)

Mar. 13, 2015

Prior Publication Data

(63)

(51)

US 2015/0186249 Al Jul. 2, 2015

Related U.S. Application Data

Continuation of application No. 13/922,579, filed on
Jun. 20, 2013, now Pat. No. 8,984,491, which is a
continuation of application No. 13/764,628, filed on
Feb. 11, 2013, now Pat. No. 8,495,585, and a
continuation of application No. 12/247,753, filed on
Oct. 8, 2008, now Pat. No. 8,392,890.

Int. Cl.
G06F 11136
G06F 161958
H04L 29106
G06F 17122

(Continued)

(2006.01)
(2019.01)
(2006.01)
(2006.01)

I 1111111111111111 1111111111 111111111111111 11111 11111 11111 111111111111111111
USO 10489286B2

(IO) Patent No.: US 10,489,286 B2
(45) Date of Patent: *Nov. 26, 2019

(52) U.S. Cl.
CPC G06F 1113696 (2013.01); G06F 1113668

(2013.01); G06F 1113688 (2013.01); G06F
161958 (2019.01); G06F 1712247 (2013.01);

H04L 67142 (2013.01)
(58) Field of Classification Search

(56)

WO

CPC ... G06F 11/3668
USPC .. 717/125
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,416,900 A
5,561,763 A

5/1995 Blanchard
10/1996 Eto

(Continued)

FOREIGN PATENT DOCUMENTS

WO 01/10082 A2 2/2001

OTHER PUBLICATIONS

Author Unknown, ')Query: New Wave Javascript", Feb. 3, 2006,
jquery.com, accessed on Apr. 19, 2019 via <web.archive.org/web/
20060203025710/http://jquery.com/> (Year: 2006). *

(Continued)

Primary Examiner - James D. Rutten

(57) ABSTRACT

Methods and systems to test web browser enabled applica
tions are disclosed. In one embodiment, a browser applica
tion can allow a user to perform test and analysis processes
on a candidate web browser enabled application. The test
enabled browser can use special functions and facilities that
are built into the test enabled browser. One implementation
of the invention pertains to functional testing, and another
implementation of the invention pertains to pertains to site
analysis.

29 Claims, 5 Drawing Sheets

100
106

104
TEST~ENABU:D BROWSER

IE
BASE

LIBRAR\
02

108,

~---

DAT1\B,-'\SE

US 10,489,286 B2
Page 2

Related U.S. Application Data

(60) Provisional application No. 60/980,068, filed on Oct.
15, 2007.

(56) References Cited

U.S. PATENT DOCUMENTS

5,642,504 A 6/1997 Shiga
5,870,559 A 2/1999 Leshem
5,974,572 A 10/1999 Weinberg et al.
6,002,871 A 12/1999 Duggan et al.
6,044,395 A 3/2000 Costales
6,044,398 A 3/2000 Marullo et al.
6,138,157 A 10/2000 Welter et al.
6,151,599 A 11/2000 Shrader et al.
6,157,940 A 12/2000 Marullo et al.
6,185,701 Bl 2/2001 Marullo et al.
6,393,479 Bl 5/2002 Glommen et al.
6,418,544 Bl 7/2002 Nesbitt et al.
6,421,070 Bl 7/2002 Ramos et al.
6,446,120 Bl 9/2002 Dantressangle
6,522,995 Bl 2/2003 Conti et al.
6,549,944 Bl 4/2003 Weinberg et al.
6,587,969 Bl 7/2003 Weinberg et al.
6,601,020 Bl 7/2003 Myers
6,662,217 Bl 12/2003 Godfrey et al.
6,684,204 Bl 1/2004 Lal
6,741,967 Bl 5/2004 Wu et al.
6,754,701 Bl 6/2004 Kessner
6,754,847 B2 6/2004 Dalal et al.
6,775,644 B2 8/2004 Myers
6,810,494 B2 10/2004 Weinberg et al.
6,865,599 B2 * 3/2005 Zhang H04L 51/04

709/218
6,918,066 B2 7/2005 Dutta et al.
6,920,608 Bl 7/2005 Davis
6,954,922 B2 10/2005 Liang
6,993,748 B2 1/2006 Schaefer
7,000,224 Bl 2/2006 Osborne, II et al.
7,013,251 Bl 3/2006 Nace et al.
7,043,546 B2 5/2006 Smith et al.
7,072,935 B2 7/2006 Kehoe et al.
7,231,606 B2 6/2007 Miller et al.
7,299,457 B2 11/2007 Marshall
7,313,595 B2 12/2007 Rust
7,316,003 Bl 1/2008 Dulepet et al.
7,337,349 B2 2/2008 Braunels et al.
7,363,616 B2 4/2008 Kalyanaraman
7,426,513 B2 9/2008 Gvily
7,454,659 Bl 11/2008 Gaudette et al.
7,461,346 B2 12/2008 Fildebrandt
7,752,326 B2 7/2010 Smit
7,757,175 B2 7/2010 Miller et al.
7,849,162 B2 12/2010 Davis et al.
7,934,201 B2 4/2011 Sweis
8,032,626 Bl 10/2011 Russell et al.
8,095,882 B2 1/2012 Kashi
8,327,271 B2 12/2012 Miller
8,352,917 B2 1/2013 Wong et al.
8,392,890 B2 3/2013 Miller
8,495,585 B2 7/2013 Miller
8,650,493 B2 2/2014 Miller et al.
8,683,447 B2 3/2014 Miller et al.
8,719,451 Bl* 5/2014 Colton G06F 17 /3089

709/248
8,984,491 B2 3/2015 Miller et al.

2002/0035498 Al 3/2002 Kehoe et al.
2002/0038388 Al* 3/2002 Netter G06F 9/4443

719/318
2002/0109717 Al 8/2002 Li et al.
2002/0138226 Al 9/2002 Doane
2002/0194388 Al 12/2002 Boloker
2003/0005044 Al 1/2003 Miller et al.
2003/0053420 Al 3/2003 Duckett et al.
2003/0229900 Al 12/2003 Reisman
2004/0010587 Al 1/2004 Altamirano et al.

2004/0039550 Al 2/2004 Myers
2004/0044966 Al * 3/2004 Malone G06F l 7 /24

2004/0054728 Al
2004/0111488 Al
2004/0148173 Al
2004/0177327 Al
2004/0261026 Al
2005/0022116 Al*

2005/0166094 Al
2005/0203902 Al
2005/0246153 Al
2006/0005066 Al
2006/0031663 Al
2006/0048214 Al
2006/0059462 Al*

2006/0069961 Al
2006/0101404 Al
2007 /0006036 Al
2007/0055679 Al*
2007/0101322 Al
2007/0115984 Al
2007/0124305 Al
2007/0150556 Al
2007/0234217 Al
2008/0109472 Al
2008/0184102 Al
2008/0222736 Al *

3/2004 Rust
6/2004 Allan
7/2004 Wu
9/2004 Kieffer

12/2004 Corson

715/255

1/2005 Bowman G06F 17 /30896
715/234

7 /2005 Blackwell et al.
9/2005 Davis et al.

11/2005 Genkin et al.
1/2006 Brauneis et al.
2/2006 Peller et al.
3/2006 Watkins
3/2006 Yamamoto G06F 17 /30861

717/115
3/2006 Kalyanararnan
5/2006 Popp et al.
1/2007 Devas et al.
3/2007 Yoshida G06F 17/2247
5/2007 Muschett
5/2007 Kumar et al.
5/2007 Smith et al.
6/2007 Fukuda et al.

10/2007 Miller
5/2008 Underwood
7 /2008 Selig
9/2008 Boodaei G06F 21/128

726/27
2008/0301643 Al 12/2008 Appleton et al.
2009/0094614 Al* 4/2009 Klementiev G06F 11/3688

2009/0228805 Al
2009/0249216 Al
2014/0157112 Al
2016/0371235 A9

9/2009 Ruehle
10/2009 Charka et al.
6/2014 Miller

12/2016 Miller

OTHER PUBLICATIONS

719/310

"Browser Compatibility Check for Internet Explorer Versions from
5.5 to 8", Retrieved at <<http://my-debugbar.com/wiki/IETester/
HomePage>>, Copyright 2001-2009, pp. 2.
"Check Browser Compatibility, Cross Platform Browser Test",
Retrieved at <<http://browershots.org/>>, Jun. 9, 2005, p. 1.
"Conference Program & Expo Guide", Vendor Technical Presenta
tion, Website Validation Technology (VT19), the 12th International
Software Quality Week 1999, San Jose, CA, May 24-28, 1999, 2
pgs.
"Conference Tutorials Expo Sponsors", conference information and
Website Validation Technology (VT 19), the 12th International Soft
ware Quality Week 1999, San Jose, CA, May 24-28, 1999, 4 pgs.
"Document Object Model (DOM) Level I Specification Version
1.0" W3C, Oct. 1, 1998, pp. 1-169.
"E-Commerce Reliability and Web Site Testing," sides, presented at
the Third International Software Quality Week Europe 1999, Brus
sels, Belgium, Nov. 1-5, 1999, 14 pages.
"Expression Web SuperPreview", Retrieved at <<http://expression.
mircosoft.corn/en-us/dd565874(printer).aspx>>, no later than Oct.
13, 2009, pp. 2.
"Expression Web SuperPreview", Retrieved at <<http://visitrnix.
com/News/Expression-Web-SuperPreview>>, Mar. 18, 2009, pp. 3.
"Firebug (Firefox extension)", Retrieved at <<http://enwikipedia.
org.wiki/Firebug_(Firefox_extension)>>, Jul. 18, 2009, pp. 1.
"First Browser Based Web Testing Tool Provides Accuracy Break
through," Press Release, eValid, Inc., Sep. 6, 2000.
"Functional/Regression Test Tools", Retrieved at <<http://www .
qcforum.org/viewtopic.php?id~l4>>, Apr. 4, 2008, pp. 8.
"IBM Rational Functional Tester Proxy SDK Reference", Retreived
at < <htpp:/ /publib. boulder.ibm.corn/infocenter/rfthelp/v7 rOm0 /index.
j sp ?topic~/ com.rational. test .ft. proxy.api .he! pf Proxy ApiReference/
overview-sununary.htrnl>>, Oct. 9, 2009, pp. 5.
"Internet Explorer Developer Toolbar", Retrieved at <<http://en.
wikipedia.org/wiki/Internet_Explorer_developer_Toolbar>>, Jun. 1,
2009, pp. 2.

US 10,489,286 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

"Netrenderer", Retrieved at <<http:/ /ipinfo.info/netrenderer/index.
php?>>, Oct. 12, 2007, p. 1.
"Products.new", Software Magazine, vol. 19, Issue 2, p. 67, plus
front page of magazine and one page advertisement, Sep. 1999.
Ready, Set, eValid, advertisement, Appliction Development Trends,
www.adtrnag.com, 2 pages, Nov. 2000.
"Record and Playback for IBM Rational Functional Tester 7.0 does
not Work on HTML Browser Menu Options", Retrieved at <<http://
www-0 l .ibm.corn/support/docview.wss?uid~swg2125 l 83>> Oct. 9,
2009, p. 1.
"Selenium-RC", Retrieved at <<http://seleniurnhq.org/docs/05_
selenium_rc.htrnl>>, Oct. 13, 2009, pp. 21.
"Software Research Announces CAPBAK/Web to Test Reliability
of Web Sites", Press Release Software Research Inc., 4 pages, Jul.
26, 1999.
SR Announces New Testing Application Suite for the Web: STW/
Web:, Press Release Software Research Inc., 2 pages, Feb. 12, 1996.
"Testing Techniques Newsletter (TTN)," On-line edition, Jul. 1999,
pp. 1-18.
"Website Validation Technology", conference slides, the 12th Inter
national Software Quality Week 1999, San Jose, CA, May 24-28,
1999, 20 pgs.
"Automated Testing with TestComplete 8", Automated Testing
Tools, http://smartbear.com/products/qaqools/autornated-testing. down
loaded Nov. 20, 2011, 3 pages.
"DejaClick", DejaClick-Wikipedia, the free encyclopedia, http://
en.wikipedia.org/wiki/Dejaclick, downloaded Nov. 20, 2011, 2 pages.
"Interface WebDriver", WebDriver, http://selenium.googlecode.com/
svn/truck/docs/api/java/org/openqa.selenium/WebDriver.htrnl, down
loaded Nov. 20, 2011, 7 pages.
"Internet Explorer", Wikipedia, the free encyclopedia, http://en.
wikipedia.org/wiki/Internet_Explorer, downloaded Dec. 9, 2011, 26
pages.
"Keynote Kite", Learn about-Keynote Internet Testing Environ
ment, http://kite.keynote.com/how-it-works.php, downloaded Nov.
20, 2011, 3 pages.
"Keynote Kite", Test WebsitelTesting Web ApplicationslApplica
tion Performance Testing-KITE, http://kite.keynote.com, down
loaded Nov. 20, 2011, 1 page.
"Keynote Systems Introduces AJAX-Based Testing Tool for Rich
Web 2.0 Sites", http://in.sy-con.com/node/451642/print, down
loaded Nov. 20, 2011, 2 pages.
"Keynote systems", Keynote systems-Wikipedia, the free ency
clopedia, http://en.wikipedia.org/wiki/Keynote_systems, down
loaded Nov. 20, 2011, 4 pages.
"Open Source at Google", Introducing WebDriver-Google Open
Source Blog, http:/ /google-opensource.blogspot.corn/2009/05/
introducing-webdriver.html, May 8, 2009, 3 pages.
"Printable Watir Tutorial", Printable Tutorial-Watir---OpenQA
Wiki, http://wiki.openqa.org/display/WTR/Printable+ Tutorial, down
loaded Nov. 20, 2011, 49 pages.
"Project Home", Project Home-Watir-OpenQA Wiki, http://wiki.
openqa.org/display/WTR/Project + Home, downloaded Nov. 20, 2011,
2 pages.
"Selenium (software)" Selenium (software), Wikipedia, the free
encyclopedia, http://en.wikipedia.org.wiki.Selenium_(software), down
loaded Nov. 20, 2011, 3 pages.
"Selenium Documentation", http://seleniurnhq.org/docs, down
loaded Nov. 20, 2011, 3 pages.
"Selenium Users", Selenium UserslGoogle Groups, http://groups.
google.corn/group/selenium-users/about, downloaded Nov. 20, 2011,
2 pages.
"Selenium-IDE", Selenium-IDE-Selenium Documentation, http://
seleniurnhq.org.docs.02_selenium_ide.htrnl#the-watfor-comrnands
in-ajax-applications, downloaded Nov. 20, 2011, 46 pages.
"SWExplorerAutornation (SWEA)", Webius-Webius Internet Explorer
Automation, http://webiussoft.com, downloaded Nov. 20, 2011, 2
pages.

"Test Automation for Web Applications", Introduction-Selenium
Documentation, http://seleiumhq.org/docs/O l_introducing_selenium.
htrnl#brief-history_of ... , downloaded Nov. 20, 2011, 8 pages.
"TestComplete", TestComplete-Wikipedia, the free encyclopedia,
http://en.wikipedia.org.wiki. Testcomplete, downloaded Nov. 20, 2011,
4 pages.
"Waitr General-Discussion", Discussions-Watir Genera!IGoogle
Group, http:// groups. goo gle .corn/ group/watir-general/topic s?tsc~ 2,
downloaded Nov. 20, 2011, 3 pages.
"Watir.com", Watir.comlWeb Application Testing in Ruby, http://
watir.corn/, downloaded Nov. 20, 2011, 7 pages.
"Watir", Watir-Wikipedia, the free encyclopedia, http://en.wikipedia.
org.wiki/Watir, downloaded Nov. 20, 2011, 3 pages.
"Webdriver", WebdriverlGoogle Groups, http:/ /groups.google.corn/
group/webdriver/about, downloaded Nov. 20, 2011, 2 pages.
"What is DejaClick?", DejaClick™ by AlertSite®, http://www.
dejaclick.corn/, downloaded Nov. 20, 2011, 2 pages.
Advisory Action for U.S. Appl. No. 10/041,768 dated Sep. 9, 2005.
Ajax (progranuning) Wikipedia Downloaded Aug. 11, 2011, pp.
1-4.
Author Unknown, "Successful Deployment of Ajax and OpenAjax",
Originally published at www.openajaz.org, Archived Feb. 26, 2008
at <http://web.archive.org/web/2008022602 l l l l/http://www.openajax.
org/whitepapers/Successful%20Deployment%20of%20Ajax%20and%
OpenAjax.php>.
Cugini et al., "Design of a File Format for Logging Website
Interaction", Retrieved at <<http:/ /zing.ncsl.nist.gov/cugini/webmet/
flud.design-paper.htrnl>>, Apr. 2001, pp. 9.
Document Object Model, Wikipedia, downloaded Jul. 7, 2011, pp.
1-6.
Eaton, et al., "Position Paper: Improving Browsing Environment
Compliance Evaluations for Websites", Retrieved at <<http://
conferenze.dei.polimi.it/wq04/final/paper04.pdf>>, Oct. 9, 2009,
pp. 6.
Edward Miller, "WebSite Testing," White paper, 2000 (printed on
Oct. 31, 2000).
Edward Miller, "WebSite Testing," White paper, presented at the
Third International Software Quality Week Europe 1999, Brussels,
Belgium, Nov. 1-5, 1999.
EValid User Manual, v7, Software Research, Inc., May 21, 2007,
677 pgs.
EValid User Manual, v8, Software Research, Inc., Jan. 28, 2008,
894 pgs.
EValid, "E-Commerce Reliability and Web Site Testing," (with
attached video graphics), presented at the Third International Soft
ware Quality Week Europe 1999, Brussels, Belgium, Nov. 1-5,
1999.
EValid, "Subscription Test TeleServices, Custom Website Testing
and Validation, Web Site Quality Consulting," presented at the Third
International Software Quality Week Europe 1999, Brussels, Bel
gium, Nov. 1-5, 1999.
Final Office Action for U.S. Appl. No. 12/247,753, dated Jul. 11,
2012.
Final Office Action for U.S. Appl. No. 12/247,753, dated May 16,
2012.
Finlay, "Web Testing Tools Break Out of Windows GUI", SD
Times, www.sdtimes.com, 3 pages, Oct. 15, 2000.
Fruhlinder, Joshua, "Cross-Brower Web Application Testing Made
Easy", Retrieved at <<http://www.ibm.com/developerworks/web/
library/wa-crossbrowser/>>, Dec. 18, 2007, pp. 11.
JavaScript, Wikipedia, Downloaded Aug. 14, 2011 pp. 1-20.
Marchetto, A.: Tonella, P.: Ricca, F.;, "State-Based Testing of Ajax
Web Applications," Software Testing, Verification, and Validatin,
2008 1st International Conference on, vol., No., pp. 121-130, Apr.
9-11, 2008 doi: 10.1109/ICST.2008.22 URL:http://ieeexplore.ieee.
org/ stamp/ stamp .j sp?tp~&arnumbeF4 5 3 9 5 3 9&isnumbeF
4539517.
Notice of Allowance for U.S. Appl. No. 10/041,768 dated Feb. 8,
2007.
Notice of Allowance for U.S. Appl. No. 11/758,624 dated Mar. 23,
2010.
Notice of Allowance for U.S. Appl. No. 12/247,753, dated Aug. 26,
2011.

US 10,489,286 B2
Page 4

(56) References Cited

OTHER PUBLICATIONS

Notice of Allowance for U.S. Appl. No. 12/247,753, dated Dec. 12,
2011.
Notice of Allowance for U.S. Appl. No. 12/795,553, dated Sep. 27,
2012.
Office Action for U.S. Appl. No. 10/041,768 dated Aug. 23, 2006.
Office Action for U.S. Appl. No. 10/041,768 dated Dec. 28, 2005.
Office Action for U.S. Appl. No. 10/041,768 dated Feb. 14, 2005.
Office Action for U.S. Appl. No. 10/041,768 dated Jul. 2, 2004.
Office Action for U.S. Appl. No. 10/041,768 dated May 13, 2005.
Office Action for U.S. Appl. No. 10/041,768 dated Jan. 16, 2007.
Office Action for U.S. Appl. No. 11/758,624 dated Sep. 17, 2009.
Office Action for U.S. Appl. No. 12/247,753, dated Mar. 3, 2011.
Office Action for U.S. Appl. No. 12/247,753, dated Mar. 22, 2012.
Advisory Action for U.S. Appl. No. 12/247,753, dated Aug. 28,
2012.
Office Action for U.S. Appl. No. 12/795,553, dated Mar. 8, 2012.
Product Release Notes, CAPBAK/Web (IE) for Windows NT and
Windows 2000, Mar. 21, 2000.
Product Release Notes, CAPBAK/Web (IE) Ver. 1.5, Nov. 24, 1999.
Salzmann, "Java Product News", Java World, www.javaworld.com/
javaworld/jw-10-2000/jw-1020-newsbrief.htrnl, 4 pages, Oct. 20,
2000.
Software Tech News, "WebSite Testing-Software Testing," vol. 3,
No. 2, printed from http://dacs.dtic.mil/awareness/newsletters/stn3-
2/toc.htrnl on Oct. 31, 2000.
The Third International Software Quality Week Europe 1999:
Lessons Learned, Seminar/Conference outline, Brussels, Belgium,
Nov. 1-5, 1999.
The Thirteenth International Software & Internet Quality Week,
Registration Materials for Seminar/Conference, San Francisco, CA,
May 30-Jun. 2, 2000.
U.S. Appl. No. 12/247,753, filed Nov. 18, 2008.
U.S. Appl. No. 12/795,553, filed Jun. 7, 2010.
W3C Document Object Mode, W3C, www.w3.org/dom, Jan. 6,
2009, pp. 1-3.
Xiong et al., "Testing Ajax Applications with Selenium", InfoQ,
www.infoq.com/articles/testing-ajax-selenium>, Sep. 25, 2006, 8
pages.
Office Action for U.S. Appl. No. 12/247,753, dated Oct. 26, 2012.
U.S. Appl. No. 13/672,599, filed Nov. 8, 2012.
U.S. Appl. No. 13/764,635, filed Feb. 11, 2013.
U.S. Appl. No. 13/764,628, filed Feb. 11, 2013.
Notice of Allowance of U.S. Appl. No. 13/764,628 dated May 15,
2013.
Office Action for U.S. Appl. No. 13/764,635, dated Jun. 6, 2013.
Strange, "The $60 Web-Test Toolbox", Better Software, Oct. 2006,
3 pgs.

Notice of Allowance for U.S. Appl. No. 13/672,599, dated Oct. 21,
2013.
Final Office Action for U.S. Appl. No. 13/764,635, dated Dec. 6,
2013.
Notice of Allowance for U.S. Appl. No. 13/764,635, dated Jan. 28,
2014.
Office Action for U.S. Appl. No. 13/922,579, dated Mar. 14, 2014.
Office Action for U.S. Appl. No. 12/818,038, dated Sep. 24, 2013.
Advisory Action for U.S. Appl. No. 13/922,579, dated Jan. 8, 2015.
Office Action for U.S. Appl. No. 14/211,305, dated Mar. 25, 2015.
"IBM Rational Functional Tester Proxy SDK Reference", Retrieved
at < <htpp:/ /publib. boulder.ibm.corn/infocenter/rfthelp/v7 rOm0 /index.
j sp ?topic~/ com.rational. test .ft. proxy.api .he! pf Proxy ApiReference/
overview-summary.html>>, Oct. 9, 2009, pp. 5.
Ready, Set, eValid, advertisement, Application Development Trends,
www.adtrnag.com, 2 pages, Nov. 2000.
Final Office Action for U.S. Appl. No. 14/211,305, dated Jul. 20,
2016.
Office Action for U.S. Appl. No. 14/211,305, dated Nov. 16, 2016.
Office Action for U.S. Appl. No. 14/098,372, dated Nov. 29, 2016.
Office Action for U.S. Appl. No. 14/211,305, dated Mar. 9, 2017.
Final Office Action for U.S. Appl. No. 14/098,372, dated Jun. 2,
2017.
Advisory Action for U.S. Appl. No. 14/211,305, dated Jun. 20,
2017.
Office Action for U.S. Appl. No. 14/211,305, dated Sep. 6, 2017.
Advisory Action for U.S. Appl. No. 14/098,372, dated Dec. 5, 2013.
Office Action for U.S. Appl. No. 14/098,372, dated Jan. 11, 2018.
Final Office Action for U.S. Appl. No. 14/211,305, dated Apr. 23,
2018.
Final Office Action for U.S. Appl. No. 14/098,372, dated Dec. 10,
2018.
J. Moore, Using Selenium's waitForValue, waitForCondition for
Ajax Tests, Agile Reality, Nov. 2005 Edition, Nov. 22, 2005.
Huggins et al., An Introduction to Testing Web Applications with
twill and Selenium, Jun. 2007 [https://www.oreilly.com/library/view/
an-introduction-to/9780596527808/ (Book)].
Ji-Tzay Yang, et. al., An Object-Oriented Architecture Supporting
Web Application Testing, IEEE, CompSAC Conference, Oct. 29,
1999 [https://ieeexplore.ieee.org/do cument/812689].
Automatisert testing av dynarnisk HTML (Norwegian University of
Science and Technology), Jun. 16, 2006 Loe et al. [http://citeseerx.
ist.psu.edu/viewdoc/download?doi~ 1 0. l. l .368.2479&rep~rep l&type~
pdf (English).].
Test-Driven Development of Ajax enabled web applications on the
Java platform (Agder University College), May 2006 [https: //uia.
brage.unit.no/uia-xmlui/handle/11250/137164]. Andersen et al.
"Using Rational Robot," Product Manual, Part No. 800-011590-
000, Rational Software Corporation, Dec. 1998.

* cited by examiner

U.S. Patent

104

Nov. 26, 2019 Sheet 1 of 5

TEST-ENABLED BROWSER

IE
BASE

UBRARY
102

100

108 ----/

FIG.1

US 10,489,286 B2

106

DATABASE

U.S. Patent Nov. 26, 2019 Sheet 2 of 5 US 10,489,286 B2

200

PERFORM TEST-BASED PROCESSING --, ,204
'-_/

PERFORM BROWSER-BASED
PROCESSING

FIG.2

206

U.S. Patent Nov. 26, 2019 Sheet 3 of 5 US 10,489,286 B2

Human

Interactive User
Desktop

USER

Process

Batch
Interface

Dynamic C/C++/C#/Java Program

Programmatic lnte1face
EPI User

Browser Desktop Interface ,...---~,..-,306

IE XML/HTML RENDER!NG ENGINE

• I Adaptive !
302 /'t-1 Playback !

: . /

Content
Validation

Mouse
Clicks

Keyboard
Inputs

l
_/ ___]

Flash/l--lex2
JRE/Java
Ac!iveX

/---·

Cache
(Cookies)

COM

HTTP/S
Protocol

JavaScript
{ECMA Script}
VBScript

Scnpt!ng
Namesrk,Ce

DOM MODEL

Internal
State

Session
Cookies

Playback
Synchronization

Page/URL
Timing

eValid Communications Interface

MF Classes:
+ IWebBrowser2
+ IHTMDocument2

Browser Executable Input/Output Interlace .,---.. .. / 305

30·1 ,...---~..-,110

Local File ,.,.-~...----308

Access

((IN\/v'W)) 303_..-,---____,·Script Logfiles

FIG. 3

U.S. Patent

400

Nov. 26, 2019 Sheet 4 of 5 US 10,489,286 B2

eVillid PageMap

==, 121 <TABLE>
b+· IIlJ <TBODY>

eValidframePath

id

innerHTMl

innerTe),(t

soure:elndex

canHaveChi!dren

canHaveHTML

das~Name

121 <TR>

•-121
· IIlJ <TD>

121 <TR>

,,,-405
I

/
l2! <TD>
fiJ 121 <P>

er
r.:;:, 121 <T ABlE>

bi ... Bl <TBQDY>

(ii 121 <TR>
Iii .. [Bl <TD>

0

true

true

FIG.4

U.S. Patent

EDIT--------•

t
Edited
Script >-·· -- .. _

EDIT

Load

:.-- ?Cript

Nov. 26, 2019 Sheet 5 of 5

500

Recorded
_§cript >··

___,.,
>///

510

----------------,

! SiteMap
: ___ Reports
:.,- --.....

>

TEST-ENABLED
BROWSER

Sub-Browser
·J,: * *

501
Sub-Browser

* * *

504 505 506
-'

Event Perf. Message Timing
Log Log Log Log

Event Performance Message Timing
Charts Charts Charts Charts

FIG. 5

US 10,489,286 B2

Web
or

Intranet

509

507

503

508

LoadTest
Log

LoadTest
Charts

US 10,489,286 B2
1

DRIVING A WEB BROWSER FOR TESTING
WEB PAGES USING A DOCUMENT OBJECT

MODEL

CROSS-REFERENCE TO OTHER
APPLICATIONS

2
3. To analyze capacity of the WebSite server by imposing

realistic loads (server loading).
4. To identify properties and characteristics of collections

of pages (site analysis).

This application is a continuation of U.S. patent applica
tion Ser. No. 13/922,579, filed Jun. 20, 2013, and entitled
"METHOD AND SYSTEM FOR TESTING WEBSITES" 10

There are several alternative methods that can be used to
obtain information about how a WebSite behaves. These
alternative methods are as follows: (1) Intercept of the
Windows event loop, which means that the program has to
process every keyboard activity and/or mouse activity at the
primitive level of where it interacts with the operating
system (OS). (2) Intercept the HTTP protocol sequence by (now U.S. Pat. No. 8,984,491), which is hereby incorporated
building a wrapper or a proxy around a browser instances,
thereby extracting the sequence of interactions between the
browser and the WebSite server. (3) Capture information

15 within the browser by building a free-standing browser with
test capabilities.

by reference herein, which is a continuation of U.S. patent
application Ser. No. 13/764,628, filed Feb. 11, 2013, and
entitled "METHOD AND SYSTEM FOR TESTING WEB
SITES" (now U.S. Pat. No. 8,495,585), which is hereby
incorporated by reference herein, which is a continuation of
U.S. patent application Ser. No. 12/247,753, filed Oct. 8,
2008, and entitled "METHOD AND SYSTEM FOR TEST
ING WEBSITES" (now U.S. Pat. No. 8,392,890), which is
hereby incorporated by reference herein, and which in turn 20

claims priority benefit of U.S. Provisional Patent Applica
tion No. 60/980,068, filed Oct. 15, 2007, and entitled
"METHOD SYSTEM AND SYSTEM FOR TESTING
WEBSITES," which is hereby incorporated by reference
herein.

Thus there is a need for improved approaches to testing
websites.

SUMMARY

The invention generally relates to testing of web browser
enabled applications. In one embodiment, a browser appli
cation can allow a user to perform test and analysis pro-

25 cesses on a candidate web browser enabled application. The
test enabled browser can use special functions and facilities
that are built into the test enabled browser. One implemen
tation of the invention pertains to functional testing, and
another implementation of the invention pertains to pertains

This application also references (i) U.S. Pat. No. 7,231,
606 which is hereby incorporated by reference herein; and
(ii) U.S. patent application Ser. No. 11/758,624, filed Jun. 5,
2007, and entitled "METHOD SYSTEM AND SYSTEM
FOR TESTING WEBSITES", now U.S. Pat. No. 7,757,175,
which is hereby incorporated by reference herein.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclo
sure as it appears in the U.S. Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to software testing and,
more particularly, to automated analysis and testing of
websites.

Description of the Related Art

Websites are complex collections of information intended

30 to site analysis.
The invention can be implemented in numerous ways,

including as a method, system, device, or apparatus (includ
ing graphical user interface and computer readable
medium). Several embodiments of the invention are dis-

35 cussed below. These embodiments can be used separately or
in any combination.

Other aspects and advantages of the invention will
become apparent from the following detailed description
taken in conjunction with the accompanying drawings which

40 illustrate, by way of example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be readily understood by the following
45 detailed description in conjunction with the accompanying

drawings, wherein like reference numerals designate like
structural elements, and in which:

50

FIG. 1 is a block diagram of a test-enabled browser
according to one embodiment.

FIG. 2 is a flow diagram oftest-enabled browser process
ing according to one embodiment.

FIG. 3 is a block diagram of browser interfaces according
to one embodiment.

FIG. 4 is a section of representative DOM internal content
55 according to one embodiment.

to be viewed and used and interacted with by sending
information from a WebSite server over the Internet to users
who work with this information from an internet browser
(client program) that typically runs on a computing device,
such as a personal computer (PC). A common browser is the
Internet Explorer (IE) browser that runs on Microsoft Win
dows. However, the invention can also equally apply to 60

non-IE browsers.

FIG. 5 is a block diagram of a website test system
according to one embodiment.

DETAILED DESCRIPTION OF THE
INVENTION

Testing and analysis of Web Applications and WebSites is
needed for various reasons:

1. To confirm content and proper operation and proper
content (functional testing and validation).

2. To determine delivered performance of a web applica
tion server (timing and tuning).

The invention generally relates to testing of web browser
enabled applications. In one embodiment, a browser appli
cation can allow a user to perform test and analysis pro-

65 cesses on a candidate web browser enabled application. The
test enabled browser can use special functions and facilities
that are built into the test enabled browser. One implemen-

US 10,489,286 B2
3

tation of the invention pertains to functional testing, and
another implementation of the invention pertains to pertains
to site analysis.

4
a trigger has been received for the test-enabled browser,
test-based processing is performed 204. Here, the test-based
processing is the processing needed to carry out the particu
lar type of testing being performed on a determined website. A test enabled web browser can provide many advantages

in terms of control of the test process, ability to measure at
a fine level of detail, to manipulate and validate the contents
of WebSite pages as they are rendered, and/or to extract
linking and other information from WebSite pages in their
fully rendered form.

A system, method or apparatus (including graphical user
interface and computer readable medium) is disclosed for
testing and analyzing WebSites via a test enabled web
browser. In one embodiment, a user can control the test
enabled web browser via a set of pull-down menus, thereby
choosing between alternative testing and analysis functional
capabilities. In one embodiment, the invention is thus a test
enabled web browser that has all of the functionality of the
parallel IE technology and which has all required test
functionality built in and easily accessible by a WebSite
analyst.

5 Following the performance of the test-based processing,
browser-based processing is performed 206. Here, the
browser-based processing is processing typically performed
by a browser application (network browser). Here, the
browser-based processing, in one implementation, can be

10 provided using the code resources stored for example in the
IE-based functional library 102 illustrated in FIG. 1. Fol
lowing the operation 206, the test-enabled browser process
ing 200 returns to repeat the decision 202 and subsequent

15
blocks so that subsequently received triggers can be simi
larly processed.
C. Browser Internal Operation

In the WebSite analysis process the test enabled web
browser can act as a constrained search engine which
examines pages in the candidate Website according to a set

FIG. 3 is a block diagram of browser interfaces according
to one embodiment of the invention. As FIG. 3 shows, the

20 internal structure of a typical browser involves a variety of
standard components that interact to produce the browsing

of inclusionary and exclusionary rules. During the auto
mated browsing each browsed pages is analyzed for a range 25

of quality attributes such as performance, content, structure
and organization. Results of these analyses can be made
available in a variety of ways for use by analysts.

The general result of systematic use of the invention on
WebSites can yield improved content quality, demonstrated 30

WebSite server behavior from an end-user perspective, and
better serviceability for e-business enterprises.

According to one embodiment, the techniques disclosed
herein can use techniques described in detail in U.S. Pat. No.
7,231,606, entitled "Method and System for Testing Web- 35

sites," which is hereby incorporated herein by reference.
Terminology, concepts, organization, and technical aspects
of that Patent are used herein.
A. Browser Operation

FIG. 1 is a block diagram of a test-enabled browser 100 40

according to one embodiment. The test-enabled browser 100

experience.
In the case of the subject invention, one of which embodi

ments is a test enabled browser referred to as a product
called "eValid", these components can operate in unison to
provide a realistic browsing experience, but also to provide
such auxiliary functions as:

1. Making a recording of user actions as sensed internally
at 300 and 301 to produce a test script;

2. Acting to dynamically modify candidate recording
actions based on actual actions taken by the browser
based on its interaction with the web application under
test, called Adaptive Playback 302;

3. Playback ofrecorded scripts 303 based on the content
of the recorded script;

4. Modification of playback based on actual behavior of
web application under test as it interacts with the test
enabled browser; and

5. Sensing and modification of the underlying Document
Object Model (DOM) at 304 for special purposes of the
test process as commanded by the user (see below).

In addition to internal page-specific capabilities, the
invention also includes

1. An external interface 305 to allow the collection of data
about the test,

2. A browser desktop interface 306 to permit the browser
to communication to other processes in the computer,

3. Access 307 to the HTTP/S protocol that is used to
communicate to/from the web application server,

4. Local file access 308 to keep records of the entire test
activity.

is designed to provide automated analysis and testing of
websites. The test-enabled browser 100 operates on a com
puting device (not shown). The test-enabled browser 100
makes use oflnternet Explorer (IE) base library 102. In this 45

regard, the test-enabled browser 100, in effect, emulates a
browser but further provides the capability to perform the
automated analysis and testing of websites. The test-enabled
browser 100 receives triggers 104 from an operating system.
These triggers (or event triggers) are, for example, a mouse 50

click, a mouse drag, a return, text entry, etc. Based on these
triggers 104, the test-enabled browser 100 operates to per
form the automated analysis and testing of websites. In
doing so, the test-enabled browser 100 can produce a log file
106 or can interact with a database of information 108.

The internal state 309 of the browser is maintained
because the browser uses standard browsing components, in
the form of DLLs 310 that are available with any browser.

55 D. Browser DOM Structure
B. Browser Signaling

FIG. 2 is a flow diagram oftest-enabled browser process
ing 200 according to one embodiment. The test-enabled
browsing processing 200 is, for example, suitable for per
formance by the test-enabled browser 100 illustrated in FIG.
1.

A test-enabled browser processing 200 initially begins
with a decision 202 that determines whether a trigger has
been received. When the decision 202 determines that a
trigger for the test-enabled browser has not yet been
received, then the test-enabled browser processing 200
awaits such a trigger. Once the decision 202 determines that

The relationship between the browsed page and its inter
nal Document Object Model (DOM) is critical to under
standing how the invention achieves its effects. In a web
page there is a collection of DOM elements that describe

60 each part of the page, some visible to the user and some
meaningful only to the browser. DOM elements are avail
able in the browser after the web page is rendered. Indi
vidual element are numbered from the top of the page
(element zero) to the bottom of the page with integers. Each

65 DOM element may have a collection of associated attributes
(sometimes also called properties) which are dependent on
the content of the page.

US 10,489,286 B2
5

FIG. 4 is a section of representative DOM internal content
according to one embodiment. In FIG. 4, item 400 shows an
index value of an element, reflected here in the representa
tive implementation as the value of the "sourceindex"
attribute "51". The HTML (HyperText Markup Language) 5

tag names are identified with their own naturally occurring
names. For example, 401 shows the value of element 51's
attribute "tagName" is "TD", and for in 402 the same
element has an attributed named "innerText" with the value
"A Google approach to email." As shown in the diagram the 10

actual text appearing in the web page rendering is given at
403 as "A Google approach to email. The position
of this particular element (element number 51) in the tree of
other elements is shown in the tree structure 405.

15

6
2. Link Extraction
The test-enabled web browser can see in the pages in

complete detail, extract anything, and use that information in
website comparison activities. The analysis of properties is
assured because of the architecture of the test enabled web
browser. All of this information is available because the test
enabled web browser uses standard browser components,
among which is an interface to the DOM for each page that
is browsed. A characteristic of the implementation of this
feature is that that the information that is collected and
stored in a database is available using standard browsing
components and standard DOM models, such as are typi
cally employed in available general purpose web browsers
of several kinds and types.

3. DOM Spidering
More selective inclusion and exclusion of links in the

work-to-be-done list/tree. This is key to a successful and
useful scan, being able to decide based on page properties,
mainly the URL but also on other internal criteria, whether

The embodiment of the invention includes the ability to
read, scan, analyze, modify, adjust, and change the particular
values of any attribute of any element in the current DOM.
This capability is required for such capabilities as test
playback synchronization on DOM values, on validation of
particular attributes of page elements, and/or on user
prompted modification of DOM elements for specific pur
poses. These are typical uses of the ability within the
invention to read, analyze, and modify the DOM, but no
limit to the use of this capability is implied.

20
to add it to the work list. If you did not do this you would
have to scan everything you find, and you may not want that.
User control is important. The criteria for inclusion and
exclusion are inclusive of any property of the page, its
component elements, its DOM properties, and its links to
other pages. All of this information is available because, in

E. Structure of Representative Implementation
FIG. 5 is a block diagram of a website test system

according to one embodiment. One or more embodiments of
the invention appear in a test enabled browser product,
whose structure and organization are shown in FIG. 5. This
diagram identifies the relationships between the externally
viewed product features:

25 one embodiment, the test enabled web browser uses stan
dard browser components, among which is an interface to
the DOM for each page that is browsed. A characteristic of
the implementation of this is that the origin of the search
process described above can be determined by the user, so

30 that the search can be made of one or more websites or
sub-websites, as specified by a starting or "root" URL and as
constrained according to the claimed limits and constraints,
so that data can be collected on full websites or sub-websites
according to the wishes and expectations of the user.

1. Recorded scripts 500 are created by and read and
executed (played back) but the test enabled browser
501, which can be edited 502 and converted into load 35

test logs 503.
2. Playback operation involves the creation of various

event logs 504 and their subsets, such as the Perfor
mance Log 505, the Message Log 506, and the Timing
log 507.

3. When multiple copies 508 of the test enabled browser
are running then a special 509 LoadTest log is used to
capture details of individual playbacks.

40

4. Cross-Page Dependency Lists
Page to page dependency capture based on the dynamic

links within the current page (web page) can be performed.
The page to page dependency tree can be kept internally in
a linked list of parent-child dependencies. Those pages
at/below an established root can be considered a subwebsite.

A characteristic of the implementation of this feature is
that the interface between the analysis function and the
database function is one that can use standard database
interface components, such that alternative database systems
can be used to contain the information that is captured 4. Scans of websites using the spider/search function

create reports 510 the relate to whole-site analysis. 45
without any loss of information or content.

Below various embodiments of a test enabled browser are F. Internal Embodiments Based on DOM Operations
discussed. In particular, embodiments of the invention can
provide, support or use one or more of: AJAX Synchroni
zation; Page Face Motion Playback; Page Element/Event
Stimulation; Page Element Validation; Page Get/Put Opera-

Additional applications of the invention's ability to ana
lyze the DOM structure of a browser page include the
following. For example, one or more embodiments can
provide Detailed Page Analysis For Properties.

1. Client Perspective
5o tion; Page Navigation Header Manipulation; DOM-Based

Adaptive Playback; Prograniming Language Interface; URL
Sequence Capture; and/or Page Analysis and Structure
Extraction.

One aspect of test enabled web browsers is that they can
scan "over the wire" and "from the client perspective"-a
significant technical advantage. Access to the DOM for
analytic purposes is assured because the test enabled web 55

browser uses standard browser components, among which is
an interface to the DOM for each web page that is browsed.
A characteristic of the implementation of this feature is that
the resulting analysis and/or spidering of the web page is
dependent on how the page actually exists at the time it is 60

served to the test enabled web browser, and does not include
or exclude any details or effects that are pertinent to the
structure, organization, layout, and content of the web page.
The operation of the search and scan activity creates a
database of information about individual pages and their 65

interactions and dependencies, such that the database can be
used for later oflline analysis.

A. AJAX Synchronization
AJAX (Asynchronous JavaScript and XML), is a tech-

nology for rich-client browser-based applications. This
approach is sweeping the technical community. Based on
advanced use of JavaScript, AJAX represents competition to
the less flexible capabilities available in such products as
Adobe/FLEX.

For functional testing the challenge imposed by AJAX is
to synchronize playback of test scripts in an environment
which is inherently asynchronous. Advanced test script
playback synchronization, virtually a necessity for AJAX
implementations, can be implemented in the subject inven
tion with DOM-based methods. Locking in this capability
adds capability to synchronize inherently asynchronous pro-
cesses to reproduce user input.

US 10,489,286 B2
7 8

A characteristic of the implementation of this feature is
that the test enabled web browser has multi-threaded access

SyncOnSelectedObjProperty O 254 IDvalue
Processing_State DONE 1111

to the DOM of the current page, or has the capability of
simultaneous access of the DOM in concert with other
browsing activities, so that one or more synchronization 5

activities or processes can proceed in parallel with other
asynchronous activities that may be operating within the
browser.

Pauses playback until ID Processing_State=DONE, and
then confirms there is a element named IDname.

SyncOnSelectedObjProperty O 254 IDname IDvalue Pro
cessing_State DONE 1111

Pauses playback until ID Processing_State=DONE, and
then also confirms that the property named
IDname=IDvalue. 1. Representative Implementation

This command can allow for synchronization of playback 10

based on the appearance of a particular value for a specified
DOM element on a page. The command can also support
Adaptive Playback to provide for intelligent behavior even
when the page changes slightly.

SyncOnSelectedObjPropertyNOT O 254 Processing_
State DONE 1111

Continues playback if ID Processing_State=DONE is not
true.

SyncOnSelectedObjPropertyNOT O 254 IDname
Processing_State DONE 1111

The following commands are indicative of the kinds of 15

actions that can be included in the invention, but they are not
exclusive. The examples below are present in the represen
tative implementation but similar commands or variants of
them would be present in other implementations. The sense
and behavior of the commands is independent of the imp le- 20

mentation.

Continues playback if ID Processing_State=DONE is not
true AND that element does NOT have a property
named IDname.

SyncOnSelectedObjPropertyNOT O 254 IDname IDvalue
Processing_State DONE 1111

COMMAND SYNTAX

SyncOnSelectedObjProperty wid idx
DOM_name DOM_value "frame_patb"

SyncOnSelectedObjProperty wid idx
"id_value" DOM_name DOM_value
"frame_patb"

SyncOnSelectedObjProperty wid idx
"id_name" "id_value" DOM_name
DOM_value "frame_patb"

SyncNotOnSelectedObjProperty wid
idx DOM_name DOM_value
"frame_patb"
SyncNotOnSelectedObjProperty wid
idx "id_value" DOM_name DOM_value
"frame_patb"

SyncNotOnSelectedObjProperty wid
idx "id_name" "id_value" DOM_name
DOM_value "frame_patb"

SyncOnElementProperty wid "name"
"Value" "frame_patb"

SyncNotOnElementProperty wid
"name" "Value" "frame_patb"

2. Suggested Usages

EXPLANATION

Synchronizes playback based on
specified DOM name and value
combination.
Synchronizes playback based on
specified DOM name and value on
an element witb specified ID tag in
tbe specified element.
Synchronizes playback based on
specified DOM name and value on
an element witb specified ID tag
and value in tbe specified element.
Synchronizes when a specified
DOM name and value are NOT
present in the specified element.
Synchronizes when a specified
DOM name and value are NOT
present in the specified element
which must have tbe specified ID
tag name.
Synchronizes when a specified
DOM name and value are NOT
present in the specified element
which must have tbe specified ID
tag name and value.
Waits for a named element
property to have a specified value.
Playback continues when any
element's specified property has
tbe required value. This applies to
any property of any element
anywhere in tbe DOM.
Waits for a named element
property and value to NOT be
found -- anywhere in tbe DOM.
Playback continues tbe first time
tbat any element has tbe required
property not equal to the required
value.

Here is a typical instance of use of this command to
synchronize on the value of the DOM object feature in 60

window O at DOM index 254 named Processing_State to
take on the value DONE:

Continues playback if ID Processing_State=DONE is not
true AND that element does NOT have a property
named IDname=IDvalue (but any other value causes
the playback to pause).

SyncOnElementProperty O Processing_State DONE 1111

Waits until SOME element anywhere in the DOM has
a property name Processing_State with value=DONE.

SyncOnSelectedObjProperty O 254 Processing_State
DONE

Pauses playback until ID Processing_State=DONE.

65 SyncNotOnElementProperty O Processing_State DONE
1111 Waits until NO element anywhere in the DOM has
a property name Processing_State with value=DONE.

US 10,489,286 B2
9

3. Intended Application
The main intended purpose of this command is to provide

auxiliary playback synchronization for pages that do not
completely adhere to standard synchronization methods that
are provided by a test enabled browser. Among many types 5

of implementation, AJAX-built pages tend to have this
characteristic.

10
value, without reference to specific DOM indexes. Because
no specific DOM index needs to be identified these tests will
be insensitive to inconsequential page changes.

2. Background Information about Web Pages
The context for these commands is based on the organi-

zation of the web page in terms of its DOM. Every web page
has a DOM that is organized as a collection of elements,
each of which has a set of named properties. Individual
properties associated with an element on the page may take

To apply the command successfully you may need to
study the internal structure of the page that you are trying to
synchronize on, find the ID of the element whose value you
are searching to match, and then adjust the test enabled
browser's behavior using the SyncOnDOM command to
wait for that element to take on the required value.

10 on a specific value.

4. Escapement Mode Synchronization Method

Many page elements have a variety of pre-defined prop
erties, which are there and have meaning due to certain
standards, but some pages have "custom properties" that can
take on values as well. Each DOM element has [by default]

In practice it probably may be required to operate a chain
of these commands in escapement mode, according to one of
these patterns:

(+) [(-) (+)rn
(-) [(+) (-)rn

15 a property named "sourceindex" [note that property names
are case sensitive], whose values uniquely number the
elements, 0, 1, 2, ... in order in the DOM tree and in rough
order of layout of the page on the screen. The assumption
here is that the "searching" being done is based on the

(+) is a wait command waiting for a specified positive
event, or a timeout.

(-) is a wait command waiting for a specified negative
event, or a timeout.

20 delivered pages having this variable structure, but within
which there is enough constancy of structure to make the
high-level process of exploiting the order of elements fea
sible.

[r n indicates there may be multiple such instances in a
sequence.

B. Page Face Motion Playback
In both AJAX and other web application technologies,

there is a need to be able to create scripts that are language
and page-detail independent. This need arises because of the
use of pages where the content is generated dynamically.

25

30

This kind of work is done in the representative imple
mentation with a series of commands that find, move,
manipulate, and manage the location of an index value
without having to be concerned with the specifics of what
that value is but what it points to, including pointing to 35

things that are a fixed relative location away from a search
able property (property value).

A characteristic of the implementation of this feature is
that the test enabled web browser has multi-threaded access

3. Working Assumptions about these Special Commands
Here are background assumptions that apply this type of

command:
There is only one sourceindex known to the test enabled

web browser at any time.
The initial value of the sourceindex is always set to zero.
The value of the sourceindex persists between pages.
Commands that use this [internally stored] sourceindex

value always refer to the current page.
The test enabled browser does not modify the sourceindex

except by action of the commands below.
Because motion on the page is from the perspective of the

view, a search DOWN toward the bottom of the page
means increasing index numbers, whereas a search UP
toward the top of the page means decreasing index
numbers.

If that's not confusing enough, maybe this will help (or
not): if you go all the way UP on a page, you're at
sourceindex 0.

4. A Note about Perspective

to the DOM of the current page, even when the browser is 40

performing other functions in parallel with the operation of
the DOM inspection and analysis process. The adaptive
playback feature implemented in the representative imple
mentation does not apply to these operations. The relative orientation of the web page being manipu-

45 lated is important to understand: 1. Representative Implementation
The basic idea of these commands is to make it possible

to have playback sequences that move around within the
current page and perform certain actions based on what is
found there.

These commands give the tester the ability to create test 50

scripts that "navigate" within the current page, possibly in a
series of separate steps, to page objects and elements by their
visible or DOM name, or even by DOM property name and

UP: This means "up" on the page as seen by the viewer,
i.e. toward the top of the page, and this means decreas
ing index numbers.

DOWN: This means "down" on the page as seen by the
viewer, i.e. toward the bottom of the page, and this
means increasing index numbers.

5. Command Descriptions in Representative Implemen-
tation

DOM Element Manipulation/Motion Commands

Working Assumptions About These Commands:

There is only one source Index known to e Valid at any time.
The sourcelndex is always an integer.
The initial value of the sourcelndex is always set to zero.
The value of the sourcelndex persists between pages.
Commands that use this [internally stored] sourcelndex value always refer to
the current page.
eValid does not modify the sourcelndex except by action of the commands
below.
Because motion on the page is from the perspective of the view, a search
DOWN toward the bottom of the page means increasing index numbers,

US 10,489,286 B2
11

-continued

DOM Element Manipulation/Motion Commands

whereas a search UP toward the top of the page means decreasing index
nwnbers.

COMMAND SYNTAX

IndexFindElement wid { UP I DOWN}
"property _name" ["property_ value"]
"frame_path"

IndexFindElementEx wid { UP I DOWN}
"string" ["string"] ... "frame_path"

IndexSet idx

IndexMove number

IndexFollowLink wid "frame_path"

IndexElementClick wid "frame_path" [NAY]

IndexSubmitClick wid frame_path"

EXPLANATION

Starting from the current
sourcelndex, this command
moves up or down in the DOM
element index number sequence
until e Valid reaches the next
element with a property of the
specified "property _name" [or
until it reaches the next element
with a property of the specified
"property _name" which has the
specified "property_ value"], or
until e Valid reaches the end [or
beginning] of the page. The
index movement is either UP
(decreasing index numbers)
initial index is positive or zero. of
DOWN (increasing index
numbers).
When a match if found this
command leaves the
sourcelndex set to the index of
the matching HTML element, if
found. If no match is found, the
sourcelndex will remain the
same.
Starting from the current
sourcelndex, this command
moves up or down in the DOM
element index number sequence
searching for a Regular
Expression match.
Moves the internally
remembered current index to idx.
idx -
0 for the first element of
the page.
idx if
you know the specific
index you want.
An illegal value is corrected to 0
and a message is issued to the
Event Log.
Moves forward (positive number)
or backward (negative number)
the specified number of source
index positions, possibly
resulting in arriving at the top or
bottom of page (but NOT
wrapping around).
If an IndexMove command
attempts to reach beyond the
end of the page, or above the
beginning of the page, the
current index will be set to O and
a Warning will be issued to the
Event Log.
Similar to the FollowLink script
command, the
IndexElementClick employs the
sourcelndex command issues a
click at the current sourcelndex
as set by a preceding IndexSet,
IndexMove, or IndexFindElement
command
Similar to the Element Click
command, this command issues
a click at the current sourcelndex
as set by a preceding IndexSet,
IndexMove, or IndexFindElement
command
Similar to SubmitClick command,
with same parameters and

12

US 10,489,286 B2
13 14

-continued

DOM Element Manipulation/Motion Commands

IndexlnputValue wid "type" "extra-!" "extra-
2", "frame_path" [NAY]

IndexValidateObjProperty wid "property
narne" "expected-value", "fraIIle_path"

IndexSaveObjProperty wid "property-name"
"filename", "frame_path"

IndexMouseOver wid x y "frame_path"
[NAY]

IndexMouseDown wid [x y] "frame_path"
[NAY]

IndexMouseUp wid [x y] "frame_path" [NAY]

IndexMouseOut wid x y "frame_path" [NAY]

C. Page Element/Event Stimulation

meaning.
Clicks the button pointed to by
the Sourcelndex.
This is the "Index" version of the
InputValue command. Behavior
is similar to the InputValue
command, with same
parameters and meanings.
Validates that on the current
sourcelndex the property named
takes on the specified value.
If the validation fails then an
ERROR is logged in the
EventLog.
On the current sourcelndex in
the page, saves the the named
property named to the specified
filename. If the property does not
exist, no action is taken.
At the current sourcelndex,
executes a left-button
MouseOver command.
The "x y" values specified are
offsets within the object supplied
by the DOM.
At the current sourcelndex,
executes a left-button
MouseDown command.
The optional [x y] values
specified are offsets within the
object that are supplied by the
DOM.
At the current sourcelndex,
executes a left-button MouseUp
command. The optional [x y]
values specified are offsets
within the object that are
supplied by the DOM.
At the current sourcelndex,
executes a left-button MouseOut
command. The "x y" values
specified are offsets within the
object supplied by the DOM.

40

1. Command Pairs
Once a DOM element is identified, the playback process

can take actions on it provided that it is an element that is
The ["string" "string"] ... notation means that you can

have as many pairs as you wish. The following syntax
examples are correct: able to accept actual or simulated user activity.

1. Representative Implementation 45

In the representative implementation the page element/
event simulation activity is performed with a command that
includes as parameters the necessary information to identify
the action to be taken and the location at which it is to be
taken. The command syntax below illustrates how this is 50

accomplished in the representative implementation, but
alternative implementations will vary in regard to syntax and
semantics but accomplish the same effect.

COMMAND SYNTAX

IndexElementEvent wid "event_narne"
"property _name" "property_ value"

55

EXPLANATION

1. IndexElementEvent wid "event_name" "property_
name" "property_value" "frame_path"

2. IndexElementEvent wid "event_name" "property_
name" "property_ value" "property _name" "property_
value" "frame_path" NAY

3. IndexElementEvent wid "event_name" "property_
name" "property_ value" "property _name" "property_
value" "property _name" "property_ value" "property_
name" "property_value" "frame_path"

The following syntax examples are invalid:
1. IndexElementEvent wid "event_name" "frame_path"
2. IndexElementEvent wid "event_name" "frame_path"

NAY
["property _name"
"property_ value"] ...

This command involves
specifying an event_name and a
sequence of "property _name"
"property_ value" in pairs.
Complete details on how

60
The example below is valid syntactically, but may pro-

duce playback errors: "frame_path" [NAY]

2. Command Explanation

these parameters work in actual
practice are given below.

Here is an explanation of how this command works in a
practical realization.

1. IndexElementEvent wid "event_name" "property_
name" "frame_path" NAY

This example has five parameters, which follow the form of
65 the first valid syntax example above. It is assumed that

"frame_path" is a property value and "NAY' as the frame_
path.

US 10,489,286 B2
15

2. Parameters
The main parameters of this command are the name of the

event and the descriptions of the actions to take. Actions are
described in name=value pairs, of which there can be any
number (as indicated by the [] ... notation in the command 5

definition). Here are the specifics:
a. Event Name:
The event_name, which can be taken from the following

list, specifies the kind of event that is to be fired:
onabort, onblur, onchange, onclick, ondblclick, onerror, 10

onfocus, onkeydown, onkeypress, onkeyup, onload,
onmousedown, onmousemove, onmouseout, onmou
seover, onmouseup, onresend, onresize, onselect,
onsubmit, onunload

Note that there could be other events that could be used 15

here, depending on how the page is constructed. The
above list is only a suggestion and may not be com
plete.

b. Action Description:
The action(s) to be taken are specified in terms of a pair 20

of parameters: property _name, property_ value.
These values may only occur in pairs and can be only

taken from the following combinations and options.
The values given below are the exact ones to use; all
values shown are case-sensitive. All other combina- 25

tions and options, including empty strings, are ignored
without issuance of Warnings or Errors during play
back.

1. altKey-sets the state of the ALT key:
true-ALT key is not pressed
false-ALT key is pressed

2. button-sets the mouse button pressed by the user.
Possible values are:
0-No button is pressed.
I-Left button is pressed.
2-Right button is pressed.
3-Left and right buttons are both pressed.
4-Middle button is pressed.

30

35

16
10. repeat-sets whether the onkeydown event is being

repeated. Possible values are:
true---event fires two or more times.
false-event fires once.

1 1. screenX, screen Y -sets the x-coordinate or y-coordi
nate of the mouse pointer's position relative to the
user's screen. The value is a long integer expressed in
pixels.

12. shiftKey-sets the state of the SHIFT key. Possible
values are:
true-SHIFT key is not pressed
false-SHIFT key is pressed.

13. srcUrn-sets the Uniform Resource Name (URN) of
the behavior that fired the event. Possible values are:
NULL----default only, camiot be changed.

14. This property is set to NULL unless both of the
following conditions are true:
A behavior currently is attached to the element on

which the event is fired.
The behavior defined in the preceding bullet has speci

fied a URN identifier and fired the event.
15. x, y-sets the x-coordinate, or y-coordinate, in pixels,

of the mouse pointer's position relative to a relatively
positioned parent element. The value is a long integer.

16. cance!Bubble-set whether the current event should
bubble up the hierarchy of event handlers. Possible
values are:
"false": Bubbling is enabled. The next event handler in

the hierarchy will receive the event.
"true": Bubbling is disabled. The next event handler in

the hierarchy will not receive the event.
17. keyCode-sets the Unicode key code associated with

the key that caused the event. The property value
parameter is a number. It is O if no key caused the event.

18. returnValue-sets the return value from the event;
valid property values: "true" and "false".

D. Page Element Validation

5-Left and middle buttons both are pressed.
6-Right and middle buttons are both pressed.
7-All three buttons are pressed.

3. clientX, clientY-sets the x-coordinate or y-coordinate

Once pages are downloaded, the need for regression
testing requires the ability to confirm that particular values

40 are present as required. Such validations steps are als_o called
"checkpoints" or "matchpoints". Prior art has provided for
the ability to confirm text entries on a page as rendered, but
in many practical cases the need for validation extends into of the mouse pointer's position relative to the client

area of the window, excluding window decorations and
cross bars. The value is a long integer expressed in 45

pixels.
4. ctr! Key-sets state of the CTRL key. Possible values

are:
true-CTRL key is not pressed
false----CTRL key is pressed.

5. ctr!Left-sets state of the left CTRL key. Possible
values are:
true-Left CTRL key is not pressed
false-Left CTRL key is pressed.

6. offsetX, offsetY-sets the x-coordinate or y-coordinate
of the mouse pointer's position relative to the object
firing the event. The value is a long integer expressed
in pixels.

7. propertyName-sets the name of the property that
changes on the objects.

8. qualifier-sets the name of the data member provided
by a data source object.

9. reason-sets the result of the data transfer for a data
source object. Possible values:
0-Data transmitted successfully
I -Data transfer aborted.
2-Data transferred in error.

50

the content of the page itself. The present invention extends
the notion of validation to include any kind of Document
Object Model (DOM) property or attribute taking on any
pre-specified value. When the required value is ~ound the
corresponding test playback PASSes; when a reqmred value
is not found the corresponding test playback FAILs.

1. Representative Implementation
As the command syntax shows below, in the representa

tive implementation the user can sp~cify the object to ~e
validated in several different ways, with more or less detail.
Three typical formats for this command are shown, but other
variations are possible within the concept identified by this

55 action.

DOM Element Value Extraction/Insertion Commands

60 COMMAND SYNTAX

ValidateSelectedObjProperty wid idx
[["id_name"] "id_ value"] name value
"frame_patb"
[1] ValidateSelectedObjProperty wid
idx name value "frarne_path"

65 [2] ValidateSelectedObjProperty wid
idx ["id_ value"] name value

EXPLANATION

Validates tbe specific content of
tbe described DOM object in
tbe indicated frame (as
specified by tbe frame_patb).
Details of tbe available names
are usually found using tbe
e Valid Page Map facility.

US 10,489,286 B2
17

-continued

DOM Element Value Extraction/Insertion Commands

COMMAND SYNTAX

"frame_path"
[3] ValidateSelectedObjProperty wid
idx [["id_name"] "id_value"] name
value "frame_path"

E. Page Get/Put Operations

EXPLANATION

If the object found at idx does
not have the given name, or if
name is correct and the value
the name currently has is
incorrect, or if name is not
found, an ERROR results.
If the object with ID equal to
id_ value exists and the name
has the specified value, or if
name is correct and the value
the name currently has is
incorrect, or if name is not
found, an ERROR results.
If the object with object
id_name equal to id_ value
exists and the name has the
specified value, or if name is
correct and the value the name
currently has is incorrect, or if
name is not found, an ERROR
results.

The user may wish to read and/or set the values selected
by the searches given above. This is done with special
Get/Put commands, illustrated in a typical syntax below.

1. Representative Implementation

Here are typical commands that implement the functional
described above, expressed in the standard command for
mat. The command syntax below illustrates how this is
accomplished in the representative implementation, but
alternative implementations will vary in regard to syntax and
semantics but accomplish the same effect.

DOM Element Value Extraction/Insertion Commands

18
F. Page Navigation Header Manipulation

To support a wide range of different browser options one
needs to be able to manipulate the "headers", the pre-request
and post-request information at the HTTP/S level. This lets

5 the representative implementation imitate other browsers
and do other test-related manipulations of how the interac
tion between the test enabled web browser and the server
operate.

10 th; t~!a;:~t:~:~~e~~:i ~:~::ei:t:~:ns:!~~~s ::t::~:
for objects of specified properties on the current page, the
identified location can be moved ahead or behind the found
object's location, and a variety of user input actions can then

15
be applied to accurately and reliably reproduce the effect of
human input.

1. Operational Introduction

In some cases it is necessary to modify the HTTP header
information, e.g. for monitoring or for special effects. This

20 is done by editing the data required as an extra argument on
a GotoLink command. Header information is contained in a
single string. Sets the current value of the header with name
to value to the specified string for the current playback up to
the next InitLink or GotoLink command, after which the

25 values are reset to "normal/default."

30

35

The values possible in the headers string are those that are
used in standard HTTP/S protocol passages. Whether a
specific header name is accepted with effect by a specific
server can only be determined by experimentation.

GotoLink Command Description With Header String Processing

COMMAND SYNTAX EXPLANATION

W_o_rki_._n~g_A_s_su_m~p_ti_on_s_A_bo_u_t_T_h_e_s_e_C_o_mm __ an_d_s_: ________
40

GotoLink wid "URL"
"frame_path"
["header_string"]
GotoLinkSubmit wid "URL"
"frame_path"
["header_string"]

Goes to the specified URL with
the browser, waits for the page
to come up (if it can within the
required minimum time), and
gives control back to the user. If
the WebSite has frames active
then the recording includes the
frame_path of the frame; on
playback this is the frame to
which the browser is pointed
with the URL. This action is the
same as typing in a URL and
pressing RETURN.

There is only one elementValue known to e Valid at any time.
The elementValue is always a string.
The initial value of the elementValue is always set to empty.
The value of the elementValue persists between pages, as long as
the current playback is running.
Commands that use this [internally stored] elementValue value
always refer to the current page.
e Valid does not modify the elementValue except by action of the
commands below.

COMMAND SYNTAX

ValueSet value

ValueGetElement wid
name "frame_path"

ValuePutElement wid name
"frame_path"

ValueSave "filename"
[APPEND]

EXPLANATION

Sets the elementValue to the specified
value.
Gets the value of the named element at
sourcelndex and saves it in elementValue.
If the object found at sourcelndex does not
have the given name, or if name is correct
and the value the name currently has is
incorrect, or if name is not found, an
ERROR results.
Inserts the current elementValue into the
specific attribute of the described DOM
object in the indicated frame (as specified
by the frame_path).
Saves the elementValue into the specified
filename. If APPEND is present, the value
is placed at the end of the named file. in
the indicated frame (as specified by the
frame_path) into the current
element Value.

45

50

2. Suggested Usages

The header_string, if used,
must separate multiple HTTP
header strings with newline
characters, e.g.
User-id: identifier In User
Password: something

Here is a typical instance of use of this command to apply
55 modified headers:

GotoLink O "www.cnn.com" 1111 "USER: name \n

PASSWORD: pass \n SessionID: 654321"

3. Modifying the User Agent String

60 One example of the use of this feature is to set the
User-Agent name to spoof the current test enabled web
browser to appear to be a different kind or type of browser
and thus to force the server to deliver pages as if eValid were
that type of browser. Note: There is also an available

65 SetUserAgent editable command that has some of the same
effects. The table below specifies some command values for
this.

US 10,489,286 B2
19 20

2. Advantages
OS Browser

Windows IE 5.0
98
Windows IE 5.5

Typical User-Agent String Definition

Mozilla/4.0 (compatible; MSIE 5.0;
Windows 98; I)
Mozilla/4.0 (compatible; MSIE 5.5;

Playback of scripts is semi-static in that-by design-the
scripting language is simple, generic, agnostic, and is not
cluttered with unnecessary programming language details.

5 The result is a scripting system that is a good compromise
98 Windows 98; I)
Windows

between expressive power and clarity and ease of use.
Netscape

98 4.5
Windows AOL 6.0
98
Windows Netscape
98 6.0
Windows IE 5.0
NT
Windows IE 5.5

Mozilla/4.5 [en]C-CCK-MCD
{ CADGraphicArts} (Win98; I)
Mozilla/4.0 (compatible; MSIE 5.01;
MSN 2.5; Windows 98)
Mozilla/5.0 (Windows; U; Win98; en-US;
m18) Gecko/20001108 Netscape6/6.0
Mozilla/4.0 (compatible; MSIE 5.0;
Windows NT;)
Mozilla/4.0 (compatible; MSIE 5.5;

However, in some cases the availability of the full power
of a procedure oriented language offers the website tester a
significant example. For example, using test engine function

10 calls from within a programming language would allow for
the use of loops, data structures, conditional executions,
extraction of values, etc.

NT Windows NT;)
Solaris IE 5.0 Mozilla/4.0 (compatible; MSIE 5.0;
2.5.1 SunOS 5.5.1 sun4m; Xll)

15

Solaris IE 5.0 Mozilla/4.0 (compatible; MSIE 5.0;
2.6 SunOS 5.6 sun4u; Xll)

G. DOM-Based Adaptive Playback
20

The adaptive playback feature keeps tests from failing due
to inconsequential changes in the underlying web page.
Without adaptive playback, tests can be too "brittle" to be
practical emulations of human input, which easily adapts to
slightly changed page conditions. 25

Previously adaptive playback commands did not take as
strong advantage as possible through use of the unique
DOM property called ID, which is increasingly used in
modern web page development (the ID property of each
page element is given a "permanent" name automatically). 30

This enhanced capability operates in parallel with and in
concert with other activities that may be going on inside the
browser (based on the use by the test enabled web browser
of standard browser components and the standard DOM
available within such browsers).

H. Programming Language Interface
Here is an explanation of how this command works in the

practical realization of the invention.

35

The automatic conversion of a recorded script into a
40

programming language means that, to the user, a test enabled
browser can record into a full programming language.

3. Operating Mode
Here is how this process works (for C++ or PERL, for

illustration purposes):
a. Record and perfect your script.evs with the represen

tative implementation using the record facility and
possibly augmented with manual edits of the script.

b. When the script is deemed ready, invoke the script
conversion option and select the target language/envi-
ronment.

c. Play the script back and observe that the converted
script is now stored in new files named "script.evs.pl"
or "script.evs.cpp."

d. Each generated file is a "fragment" of code that can be
dropped directly into a PERL wrapper or a CPP wrap
per.

e. The test enabled web browser commands, converted
into PERL or CPP, are "function calls/method calls"
into the CPP or PERL interface library that responds to
them identically as if they commands were run in the
test enabled web browser.

f. The wrapper program, in CPP or PERL, is free-standing
and contains ALL of the interface logic required to have
the test enabled browser behave according to the
instructions in the sequence of function calls/method
invocations.

g. If you do nothing else to the script at this point but
simply run the PERL or CPP program then you will
have the identically same effect as running the script in
the test enabled web browser.

h. You have the option, if you wish, to add logic, and data
structures, and whatever other kind of programming
detail you want to add in the same programming
language.

I. URL Sequence Capture

A characteristic of the implementation of this feature is
that the resulting program, which can be expressed in a
variety of programming language, e.g. C++ or PERL or C# 45
or Visual Basic, etc., has the capability of full programma
bility, thus providing the test script with the power and
flexibility available from the programming language in
which the playback sequence is embedded.

Playback of a script involves download of several parts of
a page when the browser navigates to the page. This feature

50 extracts the actual URL sequence (from data which the test
enabled browser already has) and presents it as a working
eValid script that can be better used in LoadTest runs.

1. Representative Implementation
Use of the programmatic interface feature will allow a

user to convert an actual test enabled browser script into a
form that can be incorporated into: A characteristic of the implementation of this feature is

that the test enabled web browser can emulate the sequence A PERL execution using a test enabled browser PERL
support library.

A C++ program execution using a test enabled browser
C++ support library.

A VB, or C#, or other language used to interface into the

55 of URL downloads without needing to completely browse
and render each page, a characteristic that has primary
application in creation of equivalent protocol loading on a
server, as if the test enabled browser were running indepen-

support library.
Hence, the script used within the representative implemen- 60

tation is effectively converted into a sequence of function
calls or method invocations that are meaningful in the
underlying API for the test enabled browser in that language
context. Accordingly, a script that drives the test enabled
web browser can equivalently be implemented operationally 65

in a free-standing computer program whose execution is
identical to the scrip-driven behavior, and visa versa.

dently.
1. Representative Implementation Behavior
The basic idea of this feature is to create, at script

playback time, a complete derived URL trace, in a format
ready to be submitted to an associated utility program that
retrieves specified URLs using the HTTP/S protocol. The
derived trace shows all of the URLs from that actual
playback but does not represent coherent state-preserving
activity.

US 10,489,286 B2
21

2. Overview of Operation
When used in the associated URL retrieval utility, the

derived URL trace file will visit all of the URLs that an

22
Access to the DOM for analytic purposes is assured

because the test enabled web browser uses standard browser
components, among which is an interface to the DOM for
each page that is browsed. actual playback will visit-but without any browsing of

pages (i.e. no rendering, creation of DOM, etc). Such a URL 5

trace playback will therefore replicate the full sequence of
URLs that are downloaded in browser playback-including
intra-command wait times-but with "reduced fidelity". The
derived URL trace script can be expected to play back at a
faster speed than the full, normal mode, playback because
the test enabled browser is doing significantly less work.

3. Operational Procedure

A characteristic of the implementation of this feature is
that the resulting spidering of the web page is dependent on
how the page actually exists at the time it is served to the test
enabled web browser, and does not include or exclude any
details or effects that are pertinent to the structure, organi-

l O zation, layout, and content of said web page.
1. Dynamic Creation of Internal Work List
More selective inclusion and exclusion of links in the

work-to-be-done list/tree. This is important to a successful
The procedure to use this feature in the representative

implementation is as follows:
1. Select the script that you want to process, e.g.

script.evs.
2. Turn on the Detailed Timings option and also turn on

the Create URL Trace option.

15
and useful scan, being able to decide based on page prop
erties, mainly the URL but also on other internal criteria,
whether to add it to the work list. If you do not do this you
would have to scan everything you find, and you may not

3. Play back the original script. The conversion process is
accomplished during actual playback to assure the 20

accuracy of the URL sequence extraction.
4. The resulting derived URL trace script will be saved as

"URL.script.evs".
5. The URL trace script has the usual headers, has a

"Serve URL" at the front of the script, and has a "Serve 25

FULL" at the end.
6. Load the derived URL trace script in this form to

confirm the results.
7. An eVlite run of"URL.script.evs" now will mimic the

same sequence of URL downloaded in the original 30

"script.evs".
4. Example of Script Conversion

want that. User control is important.
The criteria for inclusion and exclusion are inclusive of

any property of the page, its component elements, it's DOM
properties, and its links to other pages. All of this informa
tion is available because the test enabled web browser uses
standard browser components, among which is an interface
to the DOM for each page that is browsed.

A characteristic of the implementation of this is that the
origin of the search process described above can be deter
mined by the user, so that the search can be made of one or
more websites or sub-websites, as specified by a starting or
"root" URL and as constrained according to the claimed
limits and constraints, so that data can be collected on full
websites or sub-websites according to the wishes and expec
tations of the user. Here is an example of the effect of the transformation of

a regular test enabled web browser script into a derived URL
trace script.

Original Script

Within the context of the search, the following criteria can

35 be applied to include or exclude individual pages based on
the following criteria:

############

Original Script

Reset Timer
InitLink ''http://www.domain.com/Playback/URL.trace.html''
ElapsedTime

Derived Script

40

45

#######

URL trace script derived from script.evs

Reset Timer

GetURL ''http://www.domain.com/Playback/URL.trace.htrnl''
GetURL ''http://www.domain.com/Parts/newevalid.css''

GetURL "http://www.domain.com/Images/evalid_logo_white_trsp_top_l00x52.gif'
GetURL "http://www.domain.com/Images/evback.gif'

ElapsedTime

60

J. Page Analysis and Structure Extraction

Detailed DOM scanning yields dynamically created links.

The key is that eValid does the scan "over the wire" and
65

"from the client perspective"-a significant technical advan-

tage.

a. The specific character strings used in the URL, which
can be specified as case-sensitive or not;

b. Whether or not the page shares the domain with the
specified root domain;

c. Whether the domain name is found on a list of permit
ted domains;

d. An analysis of scripts within the current page;
e. Analysis of objects within the current page;
f. The protocols (HTTP/S and non-HTTP/S) used to

retrieve the page;
g. The type of page extension used:

h. The content of query strings that may be associated
with the URL.

i. The accumulated depth of dependence chains in the
scan:

j. The total time consumed in the scan;
k. The total number of pages examined;

US 10,489,286 B2
23

I. The total number of page to page dependency links
accumulated in the scan;

m. The total volume of data downloaded in the scan;

n. Whether the page was previously visited in the scan;

o. The response to a user-supplied program that analyzes
the entire content of the page, as supplied to it by the
invention in the same pure-HTML form it was used for
internal automated analysis.

2. Detailed Page Analysis for Properties

Detailed analysis of DOM properties immediately follows
from #1 above. The idea is, the text enabled browser can see
in the pages in complete detail, extract anything, and use that
in website comparison activities.

The analysis of properties is assured because of the
architecture of the test enabled web browser. All of this
information is available because the test enabled web
browser uses standard browser components, among which is

10

15

an interface to the DOM for each page that is browsed. 20

A characteristic of the implementation of this feature is
that that the information that is collected and stored in a
database is available using standard browsing components
and standard DOM models, such as are typically employed
in available general purpose web browsers of several kinds 25

and types.

3. Dependency Lists Generated Internally

Page to page dependency capture based on the dynamic
links within the current page follows from #1 above. The 30
page to page dependency tree can be kept internally in a
linked list of parent-child dependencies. The his claim also
incorporates the notion of a subwebsite, being those pages
at/below an established root.

A characteristic of the implementation of this feature is 35

that the interface between the analysis function and the
database function is one that uses standard database inter
face components, such that alternative database systems can
be used to contain the information that is captured without
any loss of information or content. 40

The various aspects, features, embodiments or implemen
tations of the invention described above can be used alone
or in various combinations.

The invention can be implemented by software, hardware, 45
or a combination of hardware and software. The invention
can also be embodied as computer readable code on a
computer readable medium. The computer readable medium
is any data storage device that can store data which can
thereafter be read by a computer system. Examples of the 50
computer readable medium generally include read-only
memory and random-access memory. More specific
examples of computer readable medium include Flash
memory, EEPROM memory, memory card, CD-ROM,
DVD, hard drive, magnetic tape, and optical data storage 55
device. The computer readable medium can also be distrib
uted over network-coupled computer systems so that the
computer readable code is stored and executed in a distrib
uted fashion.

The many features and advantages of the present inven- 60

tion are apparent from the written description. Further, since
numerous modifications and changes will readily occur to
those skilled in the art, the invention should not be limited
to the exact construction and operation as illustrated and
described. Hence, all suitable modifications and equivalents 65

may be resorted to as falling within the scope of the
invention.

24
What is claimed is:
1. A computing device, comprising:
a memory;
web browser program code stored in the memory; and
a processor configured to perform the web browser pro-

gram code,
wherein the web browser program code, when performed,

provides a web browser operating on the computing
device,

wherein the web browser program code provides the web
browser with Document Object Model (DOM) access
capabilities,

wherein the web browser program code, executable by the
computing device, includes at least:
computer program code for testing and analysis of a

web page as rendered by the web browser;
computer program code for accessing an attribute or

property value of an element of a DOM of the web
page, wherein the computer program code for
accessing the attribute or property value of the
element of the DOM of the web page accesses the
DOM of the web page using a browser programming
interface that enables the web browser program code
to have access to the DOM, the browser program
ming interface is supported by anAPI underlying the
web browser program code for providing a plurality
of library function calls or methods that are acces
sible by the web browser program code, and wherein
the computer program code for accessing the attri
bute or property value of the element of the DOM of
the web page accesses the attribute or property value
of the element of the DOM of the web page for
purposes of the testing and analysis of the web page
rendered in the web browser,

wherein the web browser program code supports at least
one command, provided to the web browser via the
browser programming interface, to facilitate synchro
nized testing and analysis of asynchronous processes of
the web page rendered by the web browser using the
underlying API, and

wherein the at least one command includes a DOM index
value, a DOM property name and a DOM property
value, and causes examination of a name and a value of
a property found in the DOM of the web page at the
DOM index value to determine whether the name and
the value match the DOM property name and the DOM
property value, respectively.

2. A computing device as recited in claim 1,
wherein the web browser program code, executable by the

computing device, includes at least:
computer program code for receiving an indication of

a DOM modification to be performed, and
wherein the computer program code for accessing the

attribute or property value of the element of the DOM
of the web page comprises computer program code for
modifying the attribute or property value of the element
of the DOM of the web page for purposes of the testing
and analysis of the web page rendered in the web
browser.

3. A computing device as recited in claim 2, wherein the
indication of the DOM modification to be performed is
received from the memory or from a user of the computing
device.

4. A computing device as recited in claim 2, wherein the
DOM modification sets an attribute of the element of the
DOM of the web page to a particular value.

US 10,489,286 B2
25

5. A computing device as recited in claim 1, wherein
access to the DOM of the web page by the web browser
program code for the testing and analysis of the web page
rendered in the web browser uses only the web browser
program code and the API underlying the web browser 5

program code.
6. A computing device as recited in claim 1, wherein the

examination of the name and the value of a property found
in the DOM at the DOM index value repeats until the name
and the value match the DOM property name and the DOM 10

property value, respectively.
7. A computing device as recited in claim 6,
wherein the least one command includes a maximum time

value, and
wherein the examination of the name and the value of a 15

property found in the DOM at the DOM index value no
longer repeats once the maximum time value is
exceeded.

8. A computing device as recited in claim 6, wherein the
examination of the name and the value of a property found 20

in the DOM at the DOM index value repeats until the name
and the value fail to match the DOM property name and the
DOM property value, respectively.

9. A computing device as recited in claim 8,
wherein the least one command includes a maximum time 25

value, and
wherein the examination of the name and the value of a

property found in the DOM at the DOM index value no
longer repeats once the maximum time value is
exceeded.

10. Anon-transitory computer readable medium including
at least computer program code operational on a computer
for providing a web browser, said computer readable
medium comprising:

30

26
analysis of the web page rendered in the web
browser, and wherein the computer program code for
providing web browsing capabilities and testing
capabilities supports at least one command, provided
to the web browser via the browser programming
interface, to facilitate synchronized testing and
analysis of asynchronous processes of the web page
rendered by the web browser using the underlying
API, and

wherein the at least one command includes a DOM index
value, a DOM property name and a DOM property
value, and causes examination of a name and a value of
a property found in the DOM of the web page at the
DOM index value to determine whether the name and
the value match the DOM property name and the DOM
property value, respectively.

11. Anon-transitory computer readable medium as recited
in claim 10,

wherein the computer program code for providing web
browsing capabilities and testing capabilities includes
at least:
computer program code for receiving an indication of

a DOM modification to be performed; and
wherein the computer program code for accessing the

attribute or property value of the element of the DOM
of the web page comprises:
computer program code for accessing a DOM pertain

ing to a web page of the website to locate an attribute
or property value of an element of the DOM of the
web page; and

computer program code for modifying the attribute or
property value of the element of the DOM of the web
page in accordance with the indication of the DOM
modification to be performed.

computer program code for providing web browsing 35

capabilities and testing capabilities for a website being
hosted by a server and accessible to the computer via a
network, the website including at least one web page,

12. Anon-transitory computer readable medium as recited
in claim 11, wherein the indication of the DOM modification
to be performed is previously stored to and then received

40 from the computer.
wherein the computer program code for providing web

browsing capabilities and testing capabilities, when
performed, provides the web browser with Document
Object Model (DOM) access capabilities, and

wherein the computer program code for providing web
browsing capabilities and testing capabilities includes
at least:
computer program code for testing and analysis of a

web page as rendered by the web browser; and

45

13. Anon-transitory computer readable medium as recited
in claim 11, wherein the DOM modification sets an attribute
of the element of the DOM of the web page to a particular
value.

14. Anon-transitory computer readable medium as recited
in claim 11, wherein the computer program code for modi
fying the attribute or property value of the element of the
DOM of the web page modifies the attribute or property
value of the element of the DOM of the web page for

50 purposes of the testing and analysis of the web page ren
dered in the web browser.

computer program code for accessing an attribute or
property value of an element of a DOM of the web
page, wherein the computer program code for
accessing the attribute or property value of the
element of the DOM of the web page accesses the
DOM of the web page using a browser progranmiing
interface that enables the computer program code for
providing web browsing capabilities and testing 55

capabilities to have access to the DOM, the browser
programming interface is supported by an API
underlying the computer program code for providing
web browsing capabilities and testing capabilities for
providing a plurality of library function calls or 60

methods that are accessible by the computer program
code for providing web browsing capabilities and
testing capabilities, wherein the computer program
code for accessing the attribute or property value of
the element of the DOM of the web page accesses the 65

attribute or property value of the element of the
DOM of the web page for purposes of the testing and

15. Anon-transitory computer readable medium as recited
in claim 10,

wherein the computer program code for testing and analy
sis of a web page as rendered by the web browser
operates to perform functional testing and validation,
and

wherein the testing and analysis of the web page rendered
by the web browser includes analysis of performance of
the web browser in rendering the web page.

16. Anon-transitory computer readable medium as recited
in claim 10, wherein the computer program code for pro
viding web browsing capabilities and testing capabilities
includes at least:

computer program code for supporting at least one user
input command, provided to the web browser via the
browser programming interface, to simulate an event

US 10,489,286 B2
27

action being received at the web browser to thereby
facilitate testing and analysis of the web page rendered
by the web browser.

17. A non-transitory computer readable medium as recited
in claim 16, wherein the at least one user input command is 5

an element click command.
18. Anon-transitory computer readable medium as recited

in claim 16, wherein the at least one user input command is
a mouse related command.

19. Anon-transitory computer readable medium as recited 10

in claim 10, wherein access to the DOM of the web page by
the computer program code for the testing and analysis of
the web page rendered in the web browser uses only the
computer program code for providing web browsing capa
bilities and testing capabilities and the underlying APL 15

20. Anon-transitory computer readable medium as recited
in claim 10, wherein the examination of the name and the
value of a property found in the DOM at the DOM index
value repeats until the name and the value match the DOM
property name and the DOM property value, respectively. 20

21. Anon-transitory computer readable medium as recited
in claim 20,

wherein the least one command includes a maximum time
value, and

wherein the examination of the name and the value of a 25

property found in the DOM at the DOM index value no
longer repeats once the maximum time value is
exceeded.

22. Anon-transitory computer readable medium as recited
in claim 20, wherein the examination of the name and the 30

value of a property found in the DOM at the DOM index
value repeats until the name and the value fail to match the
DOM property name and the DOM property value, respec
tively.

28
capabilities to have access to the DOM, the browser
programming interface is supported by an API
underlying the computer program code for providing
web browsing capabilities and testing capabilities for
providing a plurality of library function calls or
methods that are accessible by the computer program
code for providing web browsing capabilities and
testing capabilities, wherein the computer program
code for accessing the attribute or property value of
the element of the DOM of the web page accesses the
attribute or property value of the element of the
DOM of the web page for purposes of the testing and
analysis of the web page rendered in the web
browser, and wherein the computer program code for
providing web browsing capabilities and testing
capabilities supports at least one command, provided
to the web browser via the browser programming
interface, to facilitate synchronized testing and
analysis of asynchronous processes of the web page
rendered by the web browser using the underlying
API, and

wherein the at least one command includes a DOM index
value, a DOM property name and a DOM property
value, and causes search of the DOM of the web page
beginning at the DOM index value for a name and a
value of a property found in the DOM at the DOM
index value to determine whether the name and the
value match the DOM property name and the DOM
property value, respectively.

25. Anon-transitory computer readable medium as recited
in claim 24, wherein if no match is found at the DOM index
value, the search continues by incrementing the DOM index
value and then checking the name and the value of a
property found in the DOM at the incremented DOM index

23. Anon-transitory computer readable medium as recited
in claim 22,

35 value for match with the name and the value match the DOM

wherein the least one command includes a maximum time
value, and

wherein the examination of the name and the value of a
property found in the DOM at the DOM index value no 40

longer repeats once the maximum time value is
exceeded.

24. Anon-transitory computer readable medium including
at least computer program code operational on a computer
for providing a web browser, said computer readable 45

medium comprising:
computer program code for providing web browsing

capabilities and testing capabilities for a website being
hosted by a server and accessible to the computer via a
network, the website including at least one web page, 50

wherein the computer program code for providing web
browsing capabilities and testing capabilities, when
performed, provides the web browser with Document
Object Model (DOM) access capabilities, and

wherein the computer program code for providing web 55

browsing capabilities and testing capabilities includes
at least:
computer program code for testing and analysis of a

web page as rendered by the web browser; and
computer program code for accessing an attribute or 60

property value of an element of a DOM of the web
page, wherein the computer program code for
accessing the attribute or property value of the
element of the DOM of the web page accesses the
DOM of the web page using a browser progranmiing 65

interface that enables the computer program code for
providing web browsing capabilities and testing

property name and the DOM property value, respectively.
26. A computing device, comprising:
a memory;
web browser program code stored in the memory; and
a processor configured to perform the web browser pro-

gram code,
wherein the web browser program code, when performed,

provides a web browser operating on the computing
device,

wherein the web browser program code provides the web
browser with Document Object Model (DOM) access
capabilities,

wherein the web browser program code, executable by the
computing device, includes at least:
computer program code for testing and analysis of a

web page as rendered by the web browser;
computer program code for accessing an attribute or

property value of an element of a DOM of the web
page, wherein the computer program code for
accessing the attribute or property value of the
element of the DOM of the web page accesses the
DOM of the web page using a browser programming
interface that enables the web browser program code
to have access to the DOM, the browser program
ming interface is supported by anAPI underlying the
web browser program code for providing a plurality
of library function calls or methods that are acces
sible by the web browser program code, and wherein
the computer program code for accessing the attri
bute or property value of the element of the DOM of
the web page accesses the attribute or property value
of the element of the DOM of the web page for

US 10,489,286 B2
29

purposes of the testing and analysis of the web page
rendered in the web browser,

wherein the web browser program code supports at least
one command, provided to the web browser via the
browser programming interface, to facilitate synchro- 5

nized testing and analysis of asynchronous processes of
the web page rendered by the web browser using the
underlying API, and

wherein the at least one command includes a DOM index
value, a DOM property name and a DOM property 10

value, and causes search of the DOM of the web page
beginning at the DOM index value for a name and a
value of a property found in the DOM at the DOM
index value to determine whether the name and the
value match the DOM property name and the DOM 15

property value, respectively.
27. A computing device as recited in claim 26, wherein if

no match is found at the DOM index value, the search
continues by incrementing the DOM index value and then
checking the name and the value of a property found in the

30
DOM at the incremented DOM index value for match with
the name and the value match the DOM property name and
the DOM property value, respectively.

28. A computing device as recited in claim 26,
wherein the web browser program code, executable by the

computing device, includes at least:
computer program code for receiving an indication of

a DOM modification to be performed, and
wherein the computer program code for accessing the

attribute or property value of the element of the DOM
of the web page comprises computer program code for
modifying the attribute or property value of the element
of the DOM of the web page for purposes of the testing
and analysis of the web page rendered in the web
browser.

29. A computing device as recited in claim 28, wherein the
DOM modification sets an attribute of the element of the
DOM of the web page to a particular value.

* * * * *

